Advanced Diversity Analysis
Module Description
Diversity Analysis offers the possibility to determine the percentage of gender and age occurrence in images or videos. Ensure your desired ratio between male and female and age ranges in any content.
Module ID: advanced_diversity_analysis
Module Parameters
This module does not have any parameters
Module Result
Summary
The summarized result for this module can be retrieved via the /jobs/{JOB_ID}/summarized-results
endpoint. See here for more information.
The response has the following types:
Type | Description |
---|---|
gender_count | The total number of identities per gender |
age_count | The total number of identities per age range e.g. 20-30, 30-40 |
person_screen_time | The screen time of each identity in seconds |
gender_screen_time | The screen time of each gender (female and male) in seconds |
age_screen_time | The screen time of each age range (20-30, 30-40, .....) in seconds |
gender_speech_time | The speech time of each gender (female and male) in seconds [available in next release] |
age_speech_time | The speech time of each age range (20-30, 30-40, .....) in seconds [available in next release] |
The following example shows the response with all different result types:
{
"total": 5,
"offset": 0,
"limit": 10,
"next": "https://api.deepva.com/api/v1/jobs/68315f27-e366-41e1-bf71-169821c20a50/summarized-results/?limit=10&offset=10",
"prev": "https://api.deepva.com/api/v1/jobs/68315f27-e366-41e1-bf71-169821c20a50/summarized-results/?limit=10&offset=0",
"data": [
{
"id": "7dafa58b-a4d1-4695-a801-a75c18ad547f",
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"female": 1,
"male": 10
},
"type": "gender_count"
},
{
"id": "dfa8c65b-6785-402d-bbec-7543cd1814fb",
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"30-40": 6,
"50-60": 2,
"40-50": 1,
"60-70": 2
},
"type": "age_count"
},
{
"id": "1e7eabe4-666f-41b9-b655-de20fe308eff",
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"female_1": 5.28,
"male_1": 6.24,
"male_2": 14.88,
"male_3": 11.52,
"male_4": 7.2,
"male_5": 10.08,
"male_6": 15.36,
"male_7": 5.28,
"male_8": 15.84,
"male_9": 8.16,
"male_10": 2.88
},
"type": "person_screen_time"
},
{
"id": "e9a583fe-c5ff-4f45-ad14-7779d36fa767",
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"female": 5.28,
"male": 97.44
},
"type": "gender_screen_time"
},
{
"id": "731d7496-62af-459a-8065-ed7f955f7cfa",
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"30-40": 48.0,
"50-60": 25.92,
"40-50": 15.36,
"60-70": 13.44
},
"type": "age_screen_time"
}
]
}
Detailed results
To get detailed information about the appearance of the identities by their gender and age (including the time codes in the video) you can request the /jobs/{JOB_ID}/detailed-results/
endpoint, the response looks like this:
{
"total": 98,
"offset": 0,
"limit": 10,
"next": "http://testenv.deepva.com/api/v1/jobs/719b43f6-a9e2-4fcf-a547-6e2d3eca376c/detailed-results/?limit=10&offset=10",
"prev": "http://testenv.deepva.com/api/v1/jobs/719b43f6-a9e2-4fcf-a547-6e2d3eca376c/detailed-results/?limit=10&offset=0",
"data": [
{
"id": "07e5276b-d245-4ac1-beb4-017921bf6773",
"media_type": "video",
"frame_start": 12,
"frame_end": 48,
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"age": {"min": 25, "max": 40},
"gender": {"value": "female", "confidence": 0.99},
"person": "female_1",
"is_speaking": false
},
"thumbnail": null,
"detections": [],
"time_start": 0.48,
"time_end": 1.92,
"tc_start": "00:00:00:12",
"tc_end": "00:00:01:23"
},
{
"id": "429eca49-fcdf-4f58-8d62-1a972cc9384e",
"media_type": "video",
"frame_start": 12,
"frame_end": 24,
"source": "storage://7hFQDclAdhk35qVXu1no",
"module": "advanced_diversity_analysis",
"meta": {
"age": {"min": 26, "max": 42},
"gender": {"value": "male", "confidence": 0.99},
"person": "male_1",
"is_speaking": true
},
"thumbnail": null,
"detections": [],
"time_start": 0.48,
"time_end": 0.96,
"tc_start": "00:00:00:12",
"tc_end": "00:00:00:24"
},
........
]
}